

Outline

- DOE Program
- Aerodynamic Drag Reduction for Trucks
- Aerodynamic Reduction for Coal Cars
- Results
- Summary

DOE Heavy Vehicle Drag Reduction Program

- Established in 1998
- Consortium of government laboratories and universities
 - Lawrence Livermore National Laboratory
 - Sandia National Laboratory
 - Argonne National Laboratory
 - NASA Ames Research Center
 - University of Southern California
 - Caltech
- Additional funded activities at Auburn University, Georgia Tech Research Institute, and with a consortium of tractor manufacturers

Why Reduce Aerodynamic Drag of Trucks?

- Class 3-8 trucks account for ~25% of road vehicle fuel consumption in the US
- Aerodynamic drag at highway speeds accounts for 60% of energy expended by typical tractor trailer
- Relatively straightforward devices can reduce aerodynamic drag by 25-50%
- Potential savings of up to 1.5 billion gallons of fuel per year

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Program Activities

• Development of drag-reduction devices in wind-tunnel and road tests

• Improvements in drag-prediction ability (CFD best practices and code validation)

Improved understanding of flow physics using computations and experiments

Experimental Aerophysics Branch NASA Ames Research Center

Trailer Base Flaps

No Gap Treatment

Computed Flow Around Tractor Trailer

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Measured Surface Pressures & Air Velocity in Gap Between Tractor and Trailer

Baseline

Experimental Aerophysics Branch NASA Ames Research Center

Side Extenders

Why Reduce Aerodynamic Drag of Coal Cars?

- 2002 U.S. Statistics*
 - Coal provided 50% of electrical power
 - Total = 1 billion tons, 66% carried by rail
 - 44% tonnage, 25% loads, 21% revenue
 - -85% by unit trains (50+ cars)
 - Average coal haul = 696 miles
- Aero Drag Reduction Potential
 - Fuel consumption: empty ≈ full
 - Aero drag ~ 15% of round-trip fuel consumption
 - − 25% reduction → 5% fuel savings (75 million gal)
 - * The Rail Transportation of Coal, AAR, Vol. 5, 2003

Wind Tunnel Testing

15x15" Wind Tunnel Model Installation in Test Section Land Land Lighter Lighter

Experimental Aerophysics Branch NASA Ames Research Center

Test Details

- Drag force measured using 2-lb load cell
- Test Conditions
 - Velocity = 65 m/s (145 mph)
 - Model Reynolds No. = 160,000(full-scale Re = 3.9 million at 40 mph)
 - Critical Re = 10,000
- Yaw angles 0° to 10°
- Uncertainty:
 - -1.0 1.5% for yaw ≤ 5°
 - -2.5 4.9% for yaw $> 5^{\circ}$

Empty vs Full Cars

Yaw (ψ, deg)	C _D empty	C _D full	C _R empty	C _R full	%difference (full-empty)
0	0.3334	0.2358	0.0924	0.0653	-29.3
10	0.6015	0.3519	0.1719	0.1006	-41.5

$$C_D = D / q*A \text{ where } q = \frac{1}{2} \rho U^2$$

$$C_R = 1.0756 \rho A C_D / \cos^2 \psi \text{ , lb/mph}^2$$

Cover & Divider Configurations

Cargo-bay Cover

3 Full Dividers

3 Half Dividers

Elevated Dividers

Single Full Divider

Single Half Divider

Cover & Divider Configurations

 $(\psi = 0, \text{ no crosswind})$

Hypothesized Flow Field

Internal Bracing

Internal Bracing with Dividers

Triangular Dividers

Extended Triangles

Effect of Bracing & Dividers

Wind-Averaged Drag, \overline{C}_D

From SAE Recommended Practice, SAE J1252, 1981.

Wind-Averaged Drag & Resistance

Configuration	$\overline{\overline{C}}_{D}$ wind-avg.	%diff	ΔR, lbs 100 cars, 40 mph
Internal Bracing	0.464	0.0	0
Empty	0.490	+5.2	+ 1133
Triangular Dividers	0.412	-15.8	-2310
Extended Triangles	0.366	-25.2	-4340

Summary

- Zero-Crosswind Drag Reduction (relative to empty cars)
 - Full Coal Load: 29%; Covered Car: 43%
 - Three full-height dividers: 21%
 - Two triangular dividers: 15% & 17%(extended)
- Wind-averaged Drag Reduction
 - Two triangular dividers: 16% & 25% (extended)
- >> 25% reduction -> 5% fuel savings (75 million gal/yr)
- >> Can be retrofit by attaching to internal bracing

Future Work

- Larger scale testing
- Optimization
 - Dividers size, shape, location, porosity
 - Operational conditions / constraints
- Full-scale validation tests at Transportation Technology Center in Pueblo, CO